Sains Malaysiana 54(11)(2025): 2745-2756

http://doi.org/10.17576/jsm-2025-5411-14

 

Radiofrequency Electromagnetic Field (RF-EMF) Exposure Assessment at a Nuclear Facility: Safety Monitoring and Public

(Penilaian Pendedahan Medan Elektromagnet Frekuensi Radio (RF-EMF) di Kemudahan Nuklear: Pemantauan Keselamatan dan Keselamatan Awam)

 

RATNA SUFFHIYANNI OMAR1,*, NOR IRWANIE EMEERA MOHD NOR1, WAN SYAZLIN WAN YUNOH2, NORSYAHIDAH MOHD HIDZIR1, FAIZAL MOHAMED1, NURUL MUYASSARAH IBRAHIM1, NUR AFRINA ZAINAL2, MUHAMMAD SHAHEIR ABU SAMAH2 & ROHA TUKIMIN2

 

1Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Radiation Safety, Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia

 

Received: 13 June 2025/Accepted: 11 October 2025

 

Abstract

The widespread adoption of 5G technology has brought numerous benefits; however, it has also raised public concerns regarding potential health risks associated with exposure to radiofrequency electromagnetic fields (RF-EMF). To address these concerns, this study evaluated RF-EMF levels at the Malaysian Nuclear Agency (Nuclear Malaysia) to ensure compliance with international safety standards. A key standard examined was the guidelines established by the International Commission on Non-Ionising Radiation Protection (ICNIRP 2020). To conduct the assessment, a NARDA broadband area monitor was used to measure the RF-EMF electric field strength (E) at eight primary locations within Nuclear Malaysia over 24 h. NARDA is a brand of Narda Safety Test Solutions (Narda STS), a global leader in developing and manufacturing measurement technology for RF-EMF. Data was gathered at six-minute intervals, resulting in 240 measurement points per site. These measurements were compared to the public exposure limit of 36.38 V/m at the 700 MHz frequency band. The results showed that all recorded RF-EMF levels were below the established safety thresholds. The study found a significant correlation between location and exposure levels; laboratory blocks (Block 11) recorded the lowest readings, while administrative offices, near the external telecommunication mast (Block 28), had the highest readings. The maximum exposure measured at Block 28 represented only 3.88% of the ICNIRP (2020) guidelines limit at 1.41 V/m. Additionally, these findings indicated that workers and the public faced minimal risk due to safe RF-EMF exposure levels at Nuclear Malaysia. Consequently, the transparent communication of these results can help improve public confidence in 5G technology within sensitive environments. This study also effectively presented the inaugural empirical mapping of RF-EMF exposure in a Malaysian nuclear research facility through real-time monitoring and public safety assessments. The overall process offers several benefits, including safeguarding public health, promoting responsible growth of digital infrastructure, and providing a scalable model for environmental safety.

Keywords: Electromagnetic field; public health; radiation safety; RF-EMF; 5G

 

Abstrak

Penggunaan teknologi 5G secara meluas telah membawa banyak manfaat; walau bagaimanapun, ia juga telah menimbulkan kebimbangan orang ramai mengenai potensi risiko kesihatan yang berkaitan dengan pendedahan kepada medan elektromagnet frekuensi radio (RF-EMF). Bagi menangani kebimbangan ini, kajian ini menilai tahap RF-EMF di Agensi Nuklear Malaysia (Nuklear Malaysia) untuk memastikan pematuhan dengan piawaian keselamatan antarabangsa. Piawaian utama yang disemak ialah garis panduan yang ditetapkan oleh Suruhanjaya Antarabangsa mengenai Perlindungan Sinaran Tanpa Pengion (ICNIRP 2020). Bagi menjalankan penilaian, monitor kawasan jalur lebar NARDA telah digunakan untuk mengukur kekuatan medan elektrik RF-EMF (E) di lapan lokasi utama di Nuklear Malaysia dalam tempoh 24 jam. NARDA ialah jenama Narda Safety Test Solutions (Narda STS), peneraju global dalam membangun dan mengeluarkan teknologi pengukuran untuk RF-EMF. Data dikumpulkan pada selang enam minit, menghasilkan 240 titik pengukuran setiap tapak. Pengukuran ini dibandingkan dengan had pendedahan awam iaitu 36.38 V/m pada jalur frekuensi 700 MHz. Keputusan menunjukkan bahawa semua tahap RF-EMF yang direkodkan adalah di bawah ambang keselamatan yang ditetapkan. Kajian ini mendapati korelasi yang ketara antara lokasi dan tahap pendedahan; blok makmal (Blok 11) mencatatkan bacaan terendah, manakala pejabat pentadbiran, berhampiran tiang telekomunikasi luaran (Blok 28), mempunyai bacaan tertinggi. Pendedahan maksimum yang diukur di Blok 28 hanya mewakili 3.88% daripada had garis panduan ICNIRP (2020) pada 1.41 V/m. Di samping itu, penemuan ini menunjukkan bahawa pekerja dan orang awam menghadapi risiko minimum disebabkan oleh tahap pendedahan RF-EMF yang selamat di Nuklear Malaysia. Oleh itu, komunikasi yang telus tentang keputusan ini dapat membantu meningkatkan keyakinan orang ramai terhadap teknologi 5G dalam persekitaran yang sensitif. Kajian ini juga secara berkesan membentangkan pemetaan empirik sulung pendedahan RF-EMF di kemudahan penyelidikan Nuklear Malaysia melalui pemantauan masa nyata dan penilaian keselamatan awam. Proses keseluruhan menawarkan beberapa faedah, termasuk melindungi kesihatan awam, menggalakkan pertumbuhan infrastruktur digital yang bertanggungjawab dan menyediakan model yang boleh diskala untuk keselamatan alam sekitar.

Kata kunci: Keselamatan radiasi; kesihatan awam; medan elektromagnet; RF-EMF; 5G

 

REFERENCES

Abdullah, M., Khalid, A., Rahman, N.H.A. & Ismail, M. 2020. Environmental influence on radiation monitoring systems: A calibration study. International Journal of Radiation Physics 16(3): 98-105.

Ahmed, S., Khan, A. & Hussain, M. 2023. Real-time assessment of RF-EMF exposure in sensitive environments: A case for continuous monitoring. Journal of Radiation Protection and Research 48(2): 105-115.

Belpomme, D., Hardell, L., Belyaev, I., Burgio, E. & Carpenter, D.O. 2018. Thermal and non-thermal health effects of low intensity non-ionising radiation: An international perspective. Environmental Pollution 242(B): 643-658.

Bhatt, C.R., Redmayne, M., Billah, B., Abramson, M.J. & Benke, G. 2020. Radiofrequency-electromagnetic field exposures in everyday microenvironments in Europe: A systematic literature review. Environmental Research 180: 108823.

Bosch-Capblanch, X., Esu, E.B., Oringanje, C., Dongus, S., Jalilian, H., Eyers, J., Auer, C., Meremikwu, M. & Röösli, M. 2024. The effects of radiofrequency electromagnetic field exposure on human self-reported symptoms: A systematic review of human experimental studies. Journal of Exposure Science & Environmental Epidemiology 34: 120-135.

Chiaramello, E., Bonato, M., Fiocchi, S., Tognola, G., Parazzini, M., Ravazzani, P. & Wiart, J. 2019. Radio frequency electromagnetic fields exposure assessment in indoor environments: A review. Radiation Protection Dosimetry 190(4): 488-496.

Cordelli, E., Ardoino, L., Benassi, B., Consales, C., Eleuteri, P., Marino, C., Sciortino, M., Villani, P., Brinkworth, M.H., Chen, G., McNamee, J.P., Wood, A.W., Belackova, L., Verbeek, J. & Pacchierotti, F. 2024. Effects of radiofrequency electromagnetic fields on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. Environment International 175: 108509.

El Falou, A. & Alouini, M.S. 2022. Enhancement of rural connectivity by recycling TV towers with massive MIMO techniques. IEEE Communications Magazine 61(4): 78-83.

Esposito, G., Roca, V., Boiano, I., Di Nuzzo, L., La Commara, M. & Pugliese, M. 2020. Performance testing and quality control of NaI(Tl)-based thyroid monitoring systems for internal contamination assessment. Radiation Protection Dosimetry 190(4): 421-428.

Fernandez, M., Vecchia, P. & Strauss, S. 2021. RF-EMF exposure and health risk perceptions in the 5G era. Health Physics 120(6): 641-649.

Foster, K.R., Ziskin, M.C., Balzano, Q. & Bit-Babik, G. 2022. Modeling and measuring radiofrequency field exposures in complex environments. Health Physics 122(6): 601-612.

Gryz, K., Karpowicz, J. & Zradziński, P. 2025. Modeling radiofrequency electromagnetic field wearable distributed (multi-location) measurements system for evaluating electromagnetic hazards in the work environment. Sensors 25(15): 4607.

Hardell, L. & Carlberg, M. 2019. Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncology Letters 17(5): 4757-4770.

Hasan, M.M., Islam, M.T., Alam, T., Alzamil, A. & Soliman, M.S. 2024. Electromagnetic coupling shielding in compact MIMO antenna using symmetric T-shaped metamaterial structure for 5G communications. Optics & Laser Technology 169: 110046.

International Agency for Research on Cancer (IARC). 2019. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. Lyon: IARC.

International Atomic Energy Agency (IAEA). 2018. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3. Vienna: International Atomic Energy Agency.

International Commission on Non-Ionising Radiation Protection (ICNIRP). 2020. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Physics 118(5): 483-524.

Jalilian, H., Eeftens, M., Ziaei, M. & Röösli, M. 2019. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. Environmental Research 176: 108517.

James, C. & Lin, J.C. 2023. Review of international EMF safety standards in the era of 5G. IEEE Access 11: 7203-7215.

Karipidis, K., Baaken, D., Loney, T., Blettner, M., Brzozek, C., Elwood, M., Narh, C., Orsini, N., Röösli, M., Paulo, M. & Lagorio, S. 2024. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies. Environmental Health Perspectives 132(5): 57005.

Malaysian Communications and Multimedia Commission (MCMC). 2021. Technical Code: RF-EMF Exposure Limits and Compliance Assessment. Cyberjaya: MCMC.

Mevissen, M., Ducray, A., Ward, J.M., Kopp-Schneider, A., Mcnamee, J.P., Wood, A.W., Rivero, T.M. & Straif, K. 2025. Effects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies: A systematic review. Environmental Research 249: 118343.

Meyer, M., Cardis, E. & Vrijheid, M. 2024. Epidemiological evidence on RF-EMF exposure and health outcomes: An updated appraisal. Environmental Research 233: 116235.

Modenese, A. & Gobba, F. 2023. Occupational and public exposure to 5G radiofrequency fields: Current insights and perspectives. International Journal of Environmental Research and Public Health 20(2): 823.

Mohammad, S.A., Ahmad, M.R., Abdullah, M., Sangjong, P., Shamsul Baharin, S.A., Yusop, N., Lu, G. & Cooray, V. 2022. Characteristics of lightning electromagnetic fields produced by antarctica storms. Atmosphere 13(4): 588.

Najera, A., Villaescusa‐Tebar, A., Gonzalez‐Rubio, J. & Garcia‐Pardo, C. 2025. Dual evaluation and spatial analysis of RF‐EMF exposure in 5G: Theoretical extrapolations and direct measurements. Bioelectromagnetics 46(6): e70020.

Nitsch, J., Kuhne, J., Schmid, G., Weiser, E. & Dorn, H. 2022. Temporal variation of radiofrequency electromagnetic field exposure in relation to telecommunication traffic. Bioelectromagnetics 43(2): 132-143.

Odesanya, I., Olukanni, S. & Risi, I. 2025. Impact of atmospheric variables, radio resource control and call drop on radio frequency signals attenuation in wireless communication networks. Journal of Science Computing and Applied Engineering Research 1(1): 28-33.

Pophof, B., Kuhne, J., Schmid, G., Kramer, A., Kuster, N., Plets, D., Vermeeren, G. & Röösli, M. 2024. Cognitive performance and radiofrequency electromagnetic fields: A systematic review of human experimental studies. Environmental Health 23: 56.

Ramirez-Vazquez, R., Escobar, I., Vandenbosch, G.A. & Arribas, E. 2024. Personal exposure to radiofrequency electromagnetic fields: A comparative analysis of international, national, and regional guidelines. Environmental Research 246: 118124.

Ramirez-Vazquez, R., Escobar, I., Vandenbosch, G.A., Vargas, F., Caceres-Monllor, D.A. & Arribas, E. 2023. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. Environmental Research 218: 114979.

Razek, A. 2023. Potential health effects of radiofrequency electromagnetic fields exposure. Journal of Radiation and Environmental Health 45(2): 201-213.

Roha, T. 2024. Peningkatan pendedahan RF-EMF akibat perkembangan teknologi komunikasi 5G di Malaysia. Malaysian Journal of Radiation and Health 6(1): 34-41.

Roosli, M., Dongus, S., Jalilian, H., Eyers, J., Esu, E.B., Oringanje, C., Meremikwu, M. & Bosch-Capblanch, X. 2023. The effects of RF-EMF exposure on tinnitus, migraine and non-specific symptoms in the general and working population: A systematic review and meta-analysis. Environmental Research 216: 114568.

Simkó, M., Repacholi, M.H., Foster, K.R., Mattsson, M.O., Croft, R.J. & Scarfi, M.R. 2025. Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of bias preliminary literature assessment for 10 key characteristics of human carcinogens. Mutation Research-Reviews in Mutation Research 796: 108545.

 

*Corresponding author; email: ratna@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next